Article ID Journal Published Year Pages File Type
1674710 Thin Solid Films 2007 10 Pages PDF
Abstract

The morphological evolution of hillocks at the unpassivated sidewalls of single-crystal metallic thin film interconnects is investigated via computer simulations using the free-moving boundary value problem. The effect of drift-diffusion anisotropy on the development of surface topographical scenarios is fully explored under the action of electromigration and capillary forces, utilizing numerous combinations of the surface texture, the drift-diffusion anisotropy and the direction of the applied electric field. The simulation studies yield analytical relationships for the velocity of the surface solitary waves and the drift velocity of electromigration-induced internal voids as a function of the applied current densities, which contain intrinsic and structural properties of the single-crystal thin films. The threshold value of the applied current density, above which electromigration-induced internal voids can be formed and may cause the catastrophic failure of interconnects by breaching, also appears explicitly in this relationship.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,