Article ID Journal Published Year Pages File Type
1675450 Thin Solid Films 2006 5 Pages PDF
Abstract

Inherently nanostructured CPx compounds were studied by first-principles calculations. Geometry optimizations and cohesive energy comparisons show stability for C3P, C2P, C3P2, CP, and P4 (P2) species in isolated form as well as incorporated in graphene layers. The energy cost for structural defects, arising from the substitution of C for P and intercalation of P atoms in graphene, was also evaluated. We find a larger curvature of the graphene sheets and a higher density of cross-linkage sites in comparison to fullerene-like (FL) CNx, which is explained by differences in the bonding between P and N. Thus, the computational results extend the scope of fullerene-like thin film materials with FL-CPx and provide insights for its structural properties.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,