Article ID Journal Published Year Pages File Type
1675739 Thin Solid Films 2008 5 Pages PDF
Abstract

Interfacial stress is thought to have significant effects on electrical and oxygen transport properties in thin films of importance in solid oxide fuel cell applications. We investigate how in-plane biaxial stress modifies the electronic structure of La2/3Ca1/3MnO3 and La1/2Sr1/2MnO3 thin films prepared by pulsed laser deposition on three different substrates to vary the in-plane stress from tensile to compressive. The electronic structure was probed by X-ray absorption spectroscopy of the Mn L2,3-edge to characterize the interfacial disruption in this region in an element-specific, site-specific manner. The compressive or tensile interfacial strain modifies the relative concentrations of La and Sr in the interfacial region in order to achieve a better lattice match to the contact material. This atomic migration generates an interfacial region dominated by a compound with a single valency for the transition metal ion, resulting in a severe barrier to oxygen and electron transport through this region.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , , ,