Article ID Journal Published Year Pages File Type
167661 Combustion and Flame 2008 14 Pages PDF
Abstract

A novel approach to oxycoal flame stabilization has been developed at the Institute of Heat and Mass Transfer at RWTH Aachen University [D. Toporov, M. Förster, R. Kneer, in: Third Int. Conf. on Clean Coal Technologies for Our Future, Cagliari, Sardinia, Italy, 15–17 May 2007]. The swirl burner design and its operating conditions have been adjusted in order to enforce CO formation thus stabilizing the flame and obtaining a full burnout at levels of O2 content in the O2/CO2 mixture similar to those in air. The paper presents results of detailed numerical and experimental investigations of a stable oxy-fired pulverized coal swirl flame (type-2) obtained with a 21 vol% O2 concentration. The combustion tests were performed in a vertical pilot-scale furnace (100 kWth) in the framework of the OXYCOAL-AC research project aiming to develop a membrane-based oxyfuel process. The experimental results concerning gas velocities, gas and particle temperatures, and gas compositions are presented and discussed, focusing on the underlying mechanisms as well as on the aerodynamics of the oxycoal flame. A comparison between measurements and simulations has shown the validity of the numerical method used. The reported data set can be used for validation of numerical models developed for prediction of oxyfuel combustion.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , ,