Article ID Journal Published Year Pages File Type
1676672 Thin Solid Films 2006 6 Pages PDF
Abstract

Laser technique application to polycrystalline silicon thin-film solar cell fabrication on glass substrates has received appreciable attention. In this paper, a laser-doping technique is developed for plasma-deposited amorphous silicon film. A process involving recrystallization, phosphorous diffusion and antireflection coating can be achieved simultaneously using the laser annealing process. The doping precursor, a phosphorous-doped titanium dioxide (TiO2) solution, is synthesized using a sol–gel method and spin-coated onto the sample. After laser irradiation, the polycrystalline silicon grain size was about 0.5∼1.0 μm with a carrier concentration of 2 × 1019 cm− 3 and electron mobility of 92.6 cm2/V s. The average polycrystalline silicon reflectance can be reduced to a value of 4.65% at wavelengths between 400 and 700 nm, indicating the upper TiO2 film of antireflection coating.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , ,