Article ID Journal Published Year Pages File Type
167792 Chinese Journal of Chemical Engineering 2012 6 Pages PDF
Abstract

Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)