Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
167792 | Chinese Journal of Chemical Engineering | 2012 | 6 Pages |
Abstract
Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)