Article ID Journal Published Year Pages File Type
1678245 Ultramicroscopy 2009 5 Pages PDF
Abstract
High detection efficiency combined with spatial resolution on a nm-scale makes the field ionization process a promising candidate for spatially resolved neutral particles detection. The effective cross-sectional area σeff can serve as a measure for the effectiveness of such a field ion detector. In the present contribution, we combine quantum-mechanical calculations of the field-modified electron density distribution near the tungsten tip surface and of the resulting local field distributions, performed using the functional integration method, with a classical treatment of the atom trajectories approaching the tip in order to calculate the σeff values for ionization of free He atoms over an apex of a tungsten field emitter tip. The calculated values are compared with experimental data for supersonic He atomic beams at two different temperatures 95 and 298 K.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , ,