Article ID Journal Published Year Pages File Type
1678287 Ultramicroscopy 2009 5 Pages PDF
Abstract

Zirconium alloys are used in the nuclear industry as fuel rod cladding. They are chosen for this role because of their good mechanical properties and low thermal neutron absorption. Oxidation of these alloys by coolant is one of the chief limiting factors of the fuel burn-up efficiency. The aim of the present study is to understand these oxidation mechanisms. As a first step, a fundamental study of the oxidation of commercially pure zirconium has been conducted using the 3D atom probe (3DAP). The current generation of 3DAPs allows both voltage and laser pulsing, providing data sets of many millions of ions.According to the literature the only stable oxide of zirconium is ZrO2. However, the 3DAP shows that an initial layer a few nanometres thick forms with a composition of ZrO1−x when subjected to light oxidation. This result confirms and extends the work of Wadman et al. [Colloque de Physique 50 (1989) C8 303; Journal de Physique, 11 (1988) C6 49] and Wadman and Andrén [in: C.M. Euchen, A.M. Garde (Eds.), Zirconium in the Nuclear Industry: Ninth Symposium, ASTM STP 1132, ASTM, USA, 1991, p. 461], who used 1DAP techniques, obtaining reduced data sets. Segregation of hydrogen to the metal–oxide interface and a distinct ZrH phase were observed in this study. A novel kinetics study of the room temperature oxidation of zirconium showed the ZrO layer to be non-protective over the time period investigated (up to 1 h).

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,