Article ID Journal Published Year Pages File Type
167839 Combustion and Flame 2008 23 Pages PDF
Abstract

The oxidation of laminar premixed natural gas flames has been studied experimentally and computationally with variable mole fractions of hydrogen (0, 20, and 60%) present in the fuel mixture. All flames were operated at low pressure (0.079 atm) and at variable overall equivalence ratios (0.74<ϕ<1.00.74<ϕ<1.0) with constant cold gas velocity. At the same global equivalence ratio, there is no significant effect of the replacement of natural gas by 20% of H2. The small differences recorded for the intermediate species and combustion products are directly due to the decrease of the amount of initial carbon. However, in 60% H2 flame, the reduction of hydrocarbon species is due both to kinetic effects and to the decrease of initial carbon mole fraction. The investigation of natural gas and natural gas/hydrogen flames at similar C/O enabled identification of the real effects of hydrogen. It was shown that the presence of hydrogen under lean conditions activated the H-abstraction reactions with H atoms rather than OH and O, as is customary in rich flames of neat hydrocarbons. It was also demonstrated that the presence of H2 favors CO formation.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,