Article ID Journal Published Year Pages File Type
1678980 Ultramicroscopy 2008 8 Pages PDF
Abstract

Contrast changes of SEM images with experimental conditions (beam energy, angle of detection, etc.) are analyzed by combining physical arguments based on secondary electron emission (SEE) to instrumental arguments involving detection. Possible occurrences of contrast reversals are explored to illustrate these changes in a striking manner. Deduced from SEE yield data, simulated SEM images show a material contrast reversal for a Pt/quartz specimen, a result partly supported by real images of a Cr/quartz integrated circuit. A shift of reversal energy with the detector's position is deduced from a difference in secondary electrons (SE) angular distributions between metals and insulators. Similarly, changes of topographic contrast with detection conditions, specimen composition and angle of tilt are investigated and a possible contrast reversal is again indicated. Finally, it is shown how charging contrast deduced from the expected evolution of SEE yield during irradiation is amplified by in-lens detection: a point illustrated by a contrast reversal of images of SiC particles. The main application concerns a proper interpretation of SEM images that is essential in the investigation of devices obtained from lithographic processes. The discussion on material contrast outlines the difficulty in generalizing the present analysis based on published data and experimental strategies based on implementing specific attachments in the SEM or on biasing the specimen holder are suggested.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
,