Article ID Journal Published Year Pages File Type
1679165 Ultramicroscopy 2006 7 Pages PDF
Abstract

Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10μm wide cantilevers which combine high resonance frequencies with low spring constants (160–360 kHz with spring constants of 1–5 pN/nm). For the scanning unit, we developed a new scanner principle, based on stack piezos, which allows the construction of a scanner with 15μm scan range while retaining high resonance frequencies (>10kHz). To drive the AFM at high scan speeds and record the height and error signal, we implemented a fast Data Acquisition (DAQ) system based on a commercial DAQ card and a LabView user interface capable of recording 30 frames per second at 150×150pixels.

Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , , , , , , , , ,