Article ID Journal Published Year Pages File Type
1680354 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015 6 Pages PDF
Abstract

A cylindrical gas flow ionization chamber has been developed for measuring particle energy in Scanning Transmission Ion Microscopy Tomography (STIM-T) experiments due to its ability to withstand the direct beam. The response of a He-iso-C4H10 filled ionization detector to 2 MeV H+ and He+ beams was studied. Different operating parameters, such as concentration of isobutane (in the range of 55–100%), anode voltage, amplifier shaping time, the geometry of the detector entrance canal and the solid angle of the detector, were investigated. The stable operating plateau and the anode voltage at which the best energy resolution is attained were also determined for every gas mixture. The best energy resolution achieved so far for 2 MeV H+ and He+ static beams was ∼1.3%, which is comparable to that of Si PIN diode detectors (in the range of 15–30 keV). Computed tomography (CT) was applied to a set of STIM projections acquired with the gas ionization chamber at the IST/CTN microprobe beam line in order to visualize the 3D-mass distribution in a test structure.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , ,