Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1680459 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2013 | 8 Pages |
The thermal and optical properties of the nuclear detector CR-39 were studied in light of the demand for CR-39 and its novel physical properties, as well as its technological implications in many fields. Thermal diffusivity is the most important parameter when this detector is exposed to nuclear radiation and when consequent heat transfer processes influence the photothermal deflection spectroscopy. Thermal-induced effects on the surface of the CR-39 detector were studied using transient heat diffusion simulations. The resulting thermal deformation due to alpha particle irradiation of CR-39 will be presented. Irradiation of CR-39 by α-particles was found to lower the refractive index change with temperature. The temperature distribution was studied numerically by solving the heat diffusion equation to illustrate the effects of α-particle exposure on the CR-39. The thermal diffusivity of exposed CR-39 is the primary subject of this article.