Article ID Journal Published Year Pages File Type
1680507 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015 6 Pages PDF
Abstract

Manganese and nickel solute atoms in irradiated ferritic steels play a major role in the nanostructural evolution of reactor pressure vessels (RPV), as they are responsible for the formation of embrittling nanofeatures even in the absence of copper. The stability and mobility of small vacancy–solute clusters is here studied with an atomistic kinetic Monte Carlo approach based on ab initio calculations, in order to investigate the influence of Mn and Ni on the early life of small radiation-induced vacancy clusters, and to provide the necessary parameters for advanced object kinetic Monte Carlo simulations of the RPV long-term nanostructural evolution. Migration barriers are obtained by direct ab initio calculations or through a binding energy model based on ab initio data. Our results show a clear immobilizing and stabilizing effect on vacancy clusters as the solute content is increased, whereas the only evident difference between the two solute species is a somewhat longer elongation of the cluster mean free path in the presence of a few Mn atoms.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , ,