Article ID Journal Published Year Pages File Type
1680589 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015 9 Pages PDF
Abstract

•Radiation induced synthesis of POPGMA hydrogel is reported for the first time.•High sol–gel conversion was observed even for small absorbed doses.•POPGMA hydrogel exhibits a volume phase transition temperature (VPTT) around 15 °C.•POPGMA homopolymeric hydrogel has good cell viability and low haemolytic activity.•OPGMA based hydrogels promise to be interesting for various applications.

The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer–solvent (OPGMA375–water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2–9.0) and temperature (4–70 °C) ranges. Additional characterisation of structure and properties was conducted by UV–vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol–gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,