Article ID Journal Published Year Pages File Type
1680826 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2012 5 Pages PDF
Abstract

We report here the response of in situ formed Si-nanostructures embedded in Si-rich hydrogenated amorphous silicon nitride matrix to 100 MeV Ni8+ ions irradiation under normal incidence at room temperature. Prior to irradiation, Si-nanostructures are amorphous in nature having partial crystallinity. Irradiation with a fluence of 5 × 1012 ions/cm2 leads to dissolution of Si-nanostructures. Nevertheless, irradiation with a relatively higher fluence of 1 × 1014 ions/cm2 enhances the nucleation and leads to the formation of amorphous Si-nanostructures. The results are understood on the basis of intense electronic energy loss induced hydrogen desorption and consequent rearrangement of the amorphous network under thermal spike formalism of ion–material interaction.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , ,