Article ID Journal Published Year Pages File Type
1681045 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014 4 Pages PDF
Abstract

The effects of high cumulative radiation dose on the luminescence properties of KCl:Eu2+ are investigated. Pellet samples of KCl:Eu2+ were given doses of up to 200 kGy at the Louisiana State University Synchrotron facility. After synchrotron irradiation, samples were optically bleached and given a clinical dose of 2 Gy from a 6 MV medical linear accelerator. Optical properties were evaluated using photostimulated luminescence (PSL), photoluminescence (PL), and temperature-dependent PSL measurements. For a cumulated dose of up to 5–10 kGy, the PSL emission intensity increased by 15% compared to the PSL signal with no radiation history. For doses higher than 10 kGy, the PSL emission intensity retained at least 70% of the original intensity. Spatial correlation of the charge storage centers increased for doses up to 5 kGy and then decreased for higher cumulative doses. Emission band at 975 nm was attributed to transitions of Eu1+. PL spectra showed an intense peak centered at 420 nm for all cumulative doses. The results of this work show that KCl:Eu2+ storage phosphors are excellent reusable materials for radiation therapy dosimetry.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,