Article ID Journal Published Year Pages File Type
1681704 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014 5 Pages PDF
Abstract
The CTN (previous ITN) high resolution high energy (HRHE) PIXE set-up facility was set in operation on July 2008 and upgrades were being implemented until late in 2011. The study of a pure UO2 sample and the mapping of geological sample are the first results where the whole range of possibilities has been exploited, namely the possibility of obtaining simultaneous spectra covering a very wide energy range of more than 100 keV. In this paper, the N-shell to K-shell spectra of Uranium is presented and discussed, as well as the details on the characteristics and capacities of the setup, including the automated X-Y positioning systems installed in the X-Y-Z sample support unit, which allows for the possibility of making macroscopic mappings of geological samples (Chaves et al. (2013) [1]). As for the N-shell lines in the X-ray Microcalorimeter Spectrometer (XMS) spectrum, due to the lack of data (Zschornack (2007) [2]), transition energies were determined using ab initio calculations assuming a closed shell U4+ electronic structure for Uranium prior to the ionisation by proton impact.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,