Article ID Journal Published Year Pages File Type
1681824 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016 5 Pages PDF
Abstract
High current pulsed electron beam (HCPEB) treatment was conducted on 40CrNiMo7 steel with accelerating voltage 27 kV, energy density 3 J/cm2, pulse duration 2.5 μs and 1-50 pulses. The evolutions of surface microstructure were investigated by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. It was found that the carbides in the surface remelted layer of depth ∼4 μm were dissolved gradually along with the increasing number of HCPEB pulses. Eventually, the surface microstructure of 40CrNiMo7 steel was transformed to a complex structure composed of very refined ∼150 nm austenite as the main part and a little quantity of martensite phases. After 15 pulses of HCPEB treatment, the surface microhardness was doubled to 553 HV, and the wear rate decreased to one third of the initial state correspondingly.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , ,