Article ID Journal Published Year Pages File Type
1681832 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016 6 Pages PDF
Abstract

Calcium fluoride (CaF2) is an important optical material widely used in both microlithography and deep UV windows. It is known that under certain conditions electron beam irradiation can create therein a superlattice consisting of vacancy clusters (called a void lattice). The goal of this paper is twofold. Firstly, to perform a quantitative analysis of experimental TEM images demonstrating void lattice formation, we developed two distinct image filters. As a result, we can easily calculate vacancy concentration, vacancy cluster distribution function as well as average distances between defect clusters. The results for two suggested filters are similar and demonstrate that experimental void cluster growth is accompanied by a slight increase of the void lattice constant. Secondly, we proposed a microscopic model that allows us to reproduce a macroscopic void ordering, in agreement with experimental data, and to resolve existing theoretical and experimental contradictions. Our computer simulations demonstrate that macroscopic void lattice self-organization can occur only in a narrow parameter range. Moreover, we studied the kinetics of a void lattice ordering, starting from an initial disordered stage, in a good agreement with the TEM experimental data.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,