Article ID Journal Published Year Pages File Type
1682009 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013 6 Pages PDF
Abstract

Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er3+-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N+ ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N+ ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , ,