Article ID Journal Published Year Pages File Type
1682014 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013 4 Pages PDF
Abstract

A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) had been prepared by copolymerization of trisilanolphenyl-POSS, 4,4′-oxydianiline (ODA), and pyromellitic dianhydride (PMDA). The atomic oxygen (AO) resistance of these PI/POSS hybrid films was tested in the ground-based AO simulation facility. Exposed and unexposed surfaces were characterized by SEM and XPS. The SEM images showed that the surface of the 20 wt.% PI/POSS became much less rough than that of the pristine PI. Mass measurements of the samples showed that the erosion yield of the PI/POSS (20 wt.%) hybrid film was 1.2 × 10−25 cm3/atom, and reduced to 4.3% of that of the PI film. The XPS data indicated that the carbon content of the near-surface region was decreased from 66.0 to 7.0 at.% after AO exposure. The ratio of oxygen and silicon concentrations in the near-surface region increased to 2.08 after AO exposure. The nanometer-sized structure of POSS, with its large surface area, had led AO-irradiated samples to form a SiO2 passivation layer, which protected the underlying polymer from further AO attack. The incorporation of POSS into the PI could dramatically improve the AO resistance of PI films in low earth orbit environment.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , ,