Article ID Journal Published Year Pages File Type
1682632 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015 5 Pages PDF
Abstract
Successful implementation of ion beams for modification of ternary ZnO-based oxides requires understanding and control of radiation-induced defects. Here, we study structural disorder in wurtzite ZnO and MgxZn1−xO (x ⩽ 0.3) samples implanted at room and 15 K temperatures with Ar ions in a wide fluence range (5 × 1012-3 × 1016 cm−2). The samples were characterized by Rutherford backscattering/channeling spectrometry performed in-situ without changing the sample temperature. The results show that all the samples exhibit high radiation resistance and cannot be rendered amorphous even for high ion fluences. Increasing the Mg content leads to some damage enhancement near the surface region; however, irrespective of the Mg content, the fluence dependence of bulk damage in the samples displays the so-called IV-stage evolution with a reverse temperature effect for high ion fluences.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , ,