Article ID Journal Published Year Pages File Type
1683072 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008 9 Pages PDF
Abstract

In this work, the MCNP code was used to perform Monte Carlo simulations of the operation of a portable prompt gamma neutron activation (PGNA) system for chloride detection in reinforced concrete. The system consists of a moderated 252Cf neutron source, a high purity germanium (HPGe) gamma ray detector and a portable multichannel analyzer. The system maximum weight is 23 kg with a largest dimension of 31 cm. The simulations utilized a hybrid approach, which consisted of using MCNP simulations to model neutron transport and ray tracing for gamma ray transport, which considerably reduces computation time in comparison to a fully coupled neutron/photon Monte Carlo simulations. The simulations have shown that the current moderator design effectively thermalizes the neutron energy spectrum. At low to moderate chloride concentrations, the hybrid simulation model of the PGNA chloride detector shows very good agreement with experimental data. The MCNP computations predicted that for a standard error of 10% in counting statistics, the detection of a 2000 ppm chloride concentration (the corrosion threshold) in reinforced concrete can be achieved in a seven minute counting period. This represents a significant improvement over the current standard destructive method of measuring chlorides in concrete. Over the range of water to cement (w/c) ratios normally found in concrete mixes (0.38–0.55), the chloride signal strength shows very little variation especially at the lower chloride concentrations. Thus for all practical purposes the chloride signal remains insensitive to the w/c ratio. Similarly, the chloride signal strength does not vary significantly if limestone coarse or fine aggregate is used in place of quartz.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,