Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1683237 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2008 | 5 Pages |
Ion irradiation is an effective method to control the morphology, size and distribution of metal nanoclusters in substrates. In this work, Ag nanoclusters embedded in silica by 200 keV Ag+ ion implantation were irradiated at room temperature with Ar+ ions at 200 keV and 500 keV to different fluences. After irradiation, a transmission electron microscopy (TEM) study revealed that nanovoids are formed in the larger Ag nanoclusters. With the increase of fluence and energy of the Ar+ ions, the number and average size of the nanovoids grow combining with increases in the average size of the larger Ag nanoclusters within a projected range. During the ion irradiation process, the electronic energy and nuclear energy loss of the Ar+ ions determine the size of the hollow Ag nanoclusters and the change of the size and distribution of Ag nanoclusters in silica, leading to changes in the optical absorption spectra.