Article ID Journal Published Year Pages File Type
1683285 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014 7 Pages PDF
Abstract

To investigate the impact of conformational properties of genetic material of living cells on radiation-induced DNA damage, single strand breaks (SSB), double strand breaks (DSB) and some microdosimetric quantities of A, B and Z-DNA conformations caused by 60Co gamma rays, have been calculated. Based on a previous B-DNA geometrical model, models of A and Z forms have been developed. Simple 34 base pairs segments of each model repeated in high number and secondary electron spectrum of 60Co gamma rays have been simulated in a volume of a typical animal cell nucleus. All simulations in this study have been performed by using the Geant4 (GEometry ANd Tracking 4)-DNA extension of the Geant4 toolkit. The results showed that, B-DNA has the lowest yield of simple strand breaks with 2.23 × 10−10 Gy−1 Da−1 and 1.0 × 10−11 Gy−1 Da−1 for the SSB and DSB damage yield, respectively. The A-DNA has the highest SSB yield with 3.59 × 10−10 Gy−1 Da−1 and the Z-DNA has the highest DSB yields with 1.8 × 10−11 Gy−1 Da−1. It has been concluded that there is a direct correlation between the hit probability, mean specific imparted energy and SSB yield in each model of DNA. Moreover, there is a direct correlation between the DSB yield and both the mean lineal energy and topological characteristics of each model.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , ,