Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1683414 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2007 | 5 Pages |
This article studied various problems on the degradation of elastomers by heat and/or radiation. Three kinds of elastomers were irradiated and evaluated by the radiation resistant property using the measurement of tensile test. The fluorine containing elastomer, which has excellent heat resistant properties, was found to be less durable for irradiation than ethylene–propylene–diene (EPDM) elastomer. Ten kinds of different compounding formulas of EPDM were prepared to investigate whether the compounding for heat resistant has durability for irradiation. The thermal exposure was performed in an air oven. The duration of thermal exposure at 140 °C was 384 h. The irradiation condition was 5.0 kGy/h at 70 °C, and the total dose was 0.9 MGy. Elongation retained was taken for the evaluation of the stability. It was found that the formulas for improving the thermal stability did not bring radiation resistant of samples in the experiment.The rate constant of the increase in CO concentration by heat and radiation was measured and defined as kc(h) and kc(r), respectively. The rate constant of that under the combined addition of the heat and the radiation is expressed as kc(h + r). Eq. (1) was obtained by the experiment and it was found that there is a synergistic relationship between heat and radiation on the increase in CO concentrationequation(1)kc(h+r)>kc(h)+k(r).kc(h+r)>kc(h)+k(r).Similar relationship was observed on the rate of decrease in ultimate elongation of a certain EPDM.