Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1683738 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2010 | 5 Pages |
Abstract
CuIn3S5 and CuIn7S11 powders were prepared by solid-state reaction method using high-purity elemental copper, indium and sulphur. The films prepared from CuIn3S5 and CuIn7S11 powders were grown by thermal evaporation under vacuum (10â6 Torr) on glass substrates at different substrate temperature Ts varying from room temperature to 200 °C. The powders and thin films were characterized for their structural properties by using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). Both powders were polycrystalline with chalcopyrite and spinel structure, respectively. From the XRD data, we calculated the lattice parameters of the structure for the compounds. For CuIn3S5 powder, we also calculated the cation-anion bond lengths. The effect of substrate temperature Ts on the structural properties of the films, such as crystal phase, preferred orientation and crystallinity was investigated. Indeed, X-ray diffraction analysis revealed that the films deposited at a room temperature (30 °C) are amorphous in nature while those deposited on heated were polycrystalline with a preferred orientation along (1 1 2) of the chalcopyrite phase and (3 1 1) of the spinel phase for CuIn3S5 and CuIn7S11 films prepared from powders, respectively. The morphology of the films was determined by atomic force microscopy AFM. The surface roughness and the grain size of the films increase on increasing the substrate temperature.
Related Topics
Physical Sciences and Engineering
Materials Science
Surfaces, Coatings and Films
Authors
N. Khemiri, M. Kanzari,