Article ID Journal Published Year Pages File Type
1683743 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010 6 Pages PDF
Abstract

Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting new possibilities for mapping 3D grain shapes and crystallographic orientations in different classes of polycrystalline materials. X-ray diffraction contrast tomography (DCT) is a monochromatic beam imaging technique combining the principles of X-ray micro-tomography and three-dimensional X-ray diffraction microscopy (3DXRD). DCT provides simultaneous access to 3D grain shape, crystallographic orientation and attenuation coefficient distribution at the micrometer length scale. The microtexture of the material can be quantified in more detail by post-processing of the volume data provided by DCT. In particular one can determine the local crystallographic habit plane of the grain boundary by analysing the surface normal of the grain boundary with respect to the crystal orientation. The resulting five parameter description of the character of individual grain boundaries could previously be produced only by destructive characterization techniques. Statistical analysis of this kind of data can be expected to provide new insight into various physico-chemical processes, driven by the grain boundary energy (corrosion, coarsening).

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , ,