Article ID Journal Published Year Pages File Type
1683930 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 5 Pages PDF
Abstract
The chemical variation and depth profile of silicon carbide implanted with nitrogen and overgrown with epitaxial layer has been studied using X-ray photoelectron spectroscopy (XPS). The results of this study have been supplemented by transmission electron microscopy (TEM) imaging and electron energy loss-spectroscopy (EELS) in an attempt to correlate the chemical and structural information. Our results indicate that the nitrogen implantation into silicon carbide results in the formation of the Si-C-N layer. XPS revealed significant change in the bonding structure and chemical states in the implanted region. XPS results can be interpreted in terms of the silicon nitride and silicon carbonitride nanocrystals formation in the implanted region which is supported by the electron microscopy and spectroscopy results.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , ,