Article ID Journal Published Year Pages File Type
1684126 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract
Coupled-channel cross-sections for electron capture, ionization and electron loss due to polarization effects are calculated. The maximum impact parameter for electron escape is analyzed within the classical framework. The probabilities of ionization and capture are analyzed simultaneously by a semi-empirical method. Differing from the n-body classical trajectory Monte Carlo method, the condition for electron escape is determined by Coulomb forces related to the two nuclei. This method can be used to calculate coupled-channel cross-sections rather than single-channel ones in other methods. Therefore the calculated results can be compared with experimental data directly. In the low energy range, neglecting the ionization effect, the single-capture cross-sections of hydrogen atoms induced by various partially-stripped ions were calculated. In the high energy range, neglecting the capture effect on ionization, the pure-ionization cross-sections of neon atoms induced by Neq+ (q = 4, 6, 8) and Arq+ (q = 4, 6, 8, 10) at an incident energy E = 1.05 MeV/u were calculated. Good agreement was found between our calculation and experimental data in the literature. This method had been partially applied for intermediate energy successfully.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , ,