Article ID Journal Published Year Pages File Type
1684278 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010 4 Pages PDF
Abstract

Fe ion implantation in GaN has been investigated by means of ion beam analysis techniques. Implantations at an energy of 150 keV and fluences ranging from 2 × 1015 to 1 × 1016 cm−2 were done, both at room temperature and at 623 K. Secondary Ions Mass Spectrometry was used to determine the Fe implantation profiles, whereas Rutherford Backscattering in channeling conditions with a 2.2 MeV 4He+ beam allowed us to follow the damage evolution. Particle Induced X-ray Emission in channeling conditions with a 2 MeV H+ beam was employed to study the lattice location of Fe atoms after implantation. The results show that a high fraction of Fe-implanted atoms are located in high symmetry sites in low fluence implanted samples, where the damage level is lower, whereas the fraction of randomly located Fe atoms increases by increasing the fluence and the resulting damage. Moreover, dynamical annealing present in high temperature implantation has been shown to favor the incorporation of Fe atoms in high symmetry sites.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , ,