Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1684532 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2008 | 6 Pages |
In the present work, we study the oxidation behaviour of NbON multilayer films. The films were deposited by DC magnetron sputtering with a reactive gas pulsing process. The nitrogen flow was kept constant and the oxygen flow was pulsed. Pulse durations of 10 s produced multilayered coatings with a period of λ = 10 nm. Three different films with increasing duty cycles have been deposited.Rutherford backscattering spectroscopy (RBS) was used to study the chemical composition variations at different annealing temperatures (as-deposited, 400 °C, 500 °C and 600 °C) combined with X-ray diffraction (XRD) to identify the crystalline phases formed. At 400 °C, for all films a very thin layer starts to form at the surface with enhanced O concentration. The composition of the deeper part of the samples remains unchanged. At 500 °C, the oxide scale grows, encompassing about half the film thickness. At 600 °C, the process is finished and a single layer is formed with reduced Nb and increased O concentration. Fourier-transformation infrared spectroscopy (FTIR) results confirmed the increase of this surface oxidation, while XRD revealed that crystallization of Nb2O5 occurs at 600 °C.