Article ID Journal Published Year Pages File Type
1684637 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2006 4 Pages PDF
Abstract

A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle’s inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , ,