Article ID Journal Published Year Pages File Type
1684901 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract

The effect of electronic stopping on the sputtering of metals by cluster impact is discussed. We focus on the specific case of Au13 impact on a Au surface. Using molecular-dynamics simulation, we study several strategies to include electronic stopping. Electronic stopping influences both the magnitude of the sputter yield and the duration of the sputter process. In the usual procedure, electronic stopping only affects sufficiently fast atoms with kinetic energies above a threshold energy, which is of the order of the target cohesive energy. When assuming that electronic stopping holds down to thermal energies <1 eV, or even to 0 eV, the collision spike is rapidly quenched and the sputter yields become unrealistically small. Furthermore, we implement a scheme to include electronic stopping based on local (electron) density information readily available in a simulation.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,