Article ID Journal Published Year Pages File Type
168493 Chinese Journal of Chemical Engineering 2013 8 Pages PDF
Abstract

In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and determining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components, we introduce a novel concept of system deviation, which is able to evaluate the reconstructed observations with different independent components. The monitored statistics are transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-batch penicillin fermentation simulator, and the experimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)