Article ID Journal Published Year Pages File Type
1685411 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008 12 Pages PDF
Abstract

We have produced a pulsed beam of low energy (ultra slow) polarized positive muons (LE-μ+) and performed several demonstration muon spin rotation/relaxation (μSR) experiments at ISIS RIKEN-RAL muon facility in UK. The energy of the muons implanted into a sample is tuneable between 0.1 keV and 18 keV. This allows us to use muons as local magnetic microprobes on a nanometre scale. The control over the implantation depth is from several nanometres to hundreds of nanometres depending on the sample density and muon energy. The LE-μ+ are produced by two-photon resonant laser ionization of thermal muonium atoms. Currently ∼15 LE-μ+/s with 50% spin polarization are transported to the μSR sample position, where they are focused to a small spot with a diameter of only 4 mm. The overall LE-μ+ generation efficiency of 3 × 10−5 is comparable to that obtained when moderating the muon beam to epithermal energies in simple van der Waals bound solids. In contrast to other methods of LE-μ+ generation, the implantation of the muons into the sample can be externally triggered with the duration of the LE-μ+ pulse being only 7.5 ns. This allows us to measure spin rotation frequencies of up to 40 MHz.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , , ,