Article ID Journal Published Year Pages File Type
1685743 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008 5 Pages PDF
Abstract

Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 ± 10 °C. Neutron fluences ranged from 2 × 1021 to 8 × 1024 n/m2 (E > 0.1 MeV), corresponding to displacement damage levels in the range from 7.2 × 10−5 to 2.8 × 10−1 displacements per atom (dpa). A high density of submicroscopic cavities was observed in the neutron-irradiated Mo and their size distributions were estimated. Cavities were detected even at a very low-dose of ∼10−4 dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo, as predicted by molecular dynamics simulations.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,