Article ID Journal Published Year Pages File Type
1686188 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2011 5 Pages PDF
Abstract
Highly c-axis orientation ZnO thin films with hundreds nanometers in thickness have been deposited on (1 0 0) Si substrate by RF magnetron sputtering. These films are implanted at room temperature by 80 keV N-ions with fluences from 5.0 × 1014 to 1.0 × 1017 ions/cm2, implanted by 400 keV Xe-ions with 2.0 × 1014 to 2.0 × 1016 ions/cm2, irradiated by 3.64 MeV Xe-ions with 1.0 × 1012 to 1.0 × 1015 ions/cm2, or irradiated by 308 MeV Xe-ions with 1.0 × 1012 to 5.0 × 1014 ions/cm2, respectively. Then the ZnO films are investigated using a Raman spectroscopy. The obtained Raman spectra show that a new Raman peak located at about 578 cm−1 relating to simple defects or disorder phase appears in all ZnO films after ion implantation/irradiation, a new Raman peak at about 275 cm-1 owing to N-activated zinc-like vibrations is observed in the N-implanted samples. Moreover, a new Raman peak at about 475 cm−1 is only seen in the samples after 400 keV and 3.64 MeV Xe-ions bombardment. The area intensity of these peaks increases with increasing ion fluence. The effects of ion fluence, element chemical activity, atom displacements induced by nuclear collisions as well as energy deposition on the damage process of ZnO films under ion implantation/irradiation are discussed briefly.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , , ,