Article ID Journal Published Year Pages File Type
1686303 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2006 6 Pages PDF
Abstract

Advanced electron microscopy techniques have been employed to examine atomistic structures of ion-beam-induced amorphous silicon carbide (SiC). Single crystals of 4H-SiC were irradiated at a cryogenic temperature (120 K) with 300 keV Xe ions to a fluence of 1015 cm−2. A continuous amorphous layer formed on the topmost layer of the SiC substrate was characterized by energy-filtering transmission electron microscopy in combination with imaging plate techniques. Atomic pair-distribution functions obtained by a quantitative analysis of energy-filtered electron diffraction patterns revealed that amorphous SiC networks contain heteronuclear Si–C bonds, as well as homonuclear Si–Si and C–C bonds, within the first coordination shell. The effects of inelastically-scattered electrons on atomic pair-distribution functions were discussed.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
,