Article ID Journal Published Year Pages File Type
1686786 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010 6 Pages PDF
Abstract

It is more and more necessary to improve the sensitivity of gamma-ray spectroscopy systems, especially in nuclear astrophysics. In the case of radiative proton capture reactions, one means is to avoid the reactions on the target impurities by using reverse kinematics. This technique is possible with the LARN accelerator and can provide very clean cross-section measurements. For that purpose, a hydrogen standard has been carried out by means of ion implantation in silicon. In addition, a low-level setup has been put in place on a new beam line of the accelerator. A high efficiency and high resolution germanium detector is used conjointly with a double shielding. A passive lead castle shielding system is used to reduce the natural radioactivity and an active shielding consisting of an anti-cosmic veto is provided by an anticoincidence between the plastic scintillator and the gamma-ray detector. The setup allows a reduction of 70% of the background interference and provides an approximately 200 fold sensitivity gain of between 600 and 3000 keV. Some other developments have also been carried out to optimize the setup. The entire setup and the reverse kinematics have been validated by measuring the cross-section of the 13C(p,γ)14N and 15N(p,γ)16O reactions that present some astrophysical interest.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , ,