Article ID Journal Published Year Pages File Type
1686974 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract

The main assumption of existing efficient topography simulations is that sputtering is a local process that depends only on the angle of incidence and not on the detailed shape of the surface. If redeposition is considered, sputtered atoms are redeposited and cause no further sputtering when they hit another part of the surface. Furthermore the angular distribution of sputtered atoms follows a cosine law. If ion reflection is considered, ions do not lose energy during backscattering. Using binary collision simulations (IMSIL) and comparing them with results obtained by a topography simulator (IonShaper®) we show that all these assumptions need refinement for the simulation of nanostructures except the neglect of sputtering by sputtered atoms. In addition we show that a nonlocal model is essential for ion beam induced deposition of narrow structures.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,