Article ID Journal Published Year Pages File Type
1686996 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract
Single (CO2)N (N = 1-20) cluster impact on three different carbon-based surfaces of fullerite (1 1 1), graphite and diamond (1 0 0) has been investigated by MD simulations with the cluster collision energy from 5 to 14 keV/cluster as a first step toward the general modeling of the reactive sputtering by cluster impact of a solid surface. A crater permanently remained on the fullerite and graphite surfaces while it was quickly replenished with fluidized carbon material on the diamond surface. In spite of the smaller crater size as well as the crater recovery resulting in the reduction of the surface area, the sputtering yields were the highest on diamond. The effective energy deposition near the surface contributes to the temperature rise and consequent sputtering seemed highly reduced due to the collision cascades especially on the fullerite target.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , ,