Article ID Journal Published Year Pages File Type
1687013 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract
By means of molecular dynamics simulations using bond-order potential (BOP), we have investigated the interactions between carbon (C) atoms and bcc tungsten (W). At finite temperature (T = 300 K) with incident energy of C atoms ranging from 0.5 to 100 eV at normal incidence, the projected range distribution as a function of incident energy and the average depth have been depicted. The properties of vacancy, vacancy migration, interstitial and substitutional C atoms in W have been determined. The most stable configuration for an interstitial C atom in W is in octahedral position and the lattice distortion around the C atom in octahedral interstitial configuration occurs along 〈1 0 0〉 and 〈1 1 0〉 directions. The mutual interaction between a vacancy and near interstitial C atom is also studied.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , ,