Article ID Journal Published Year Pages File Type
168723 Combustion and Flame 2014 4 Pages PDF
Abstract

Solid energetic composites have been used and studied in standard air environments, yet the contribution of atmospheric oxygen to reactive material combustion has not been investigated. This study experimentally examines the effect of atmospheric oxygen concentration (4% or 93% oxygen) on energy propagation of nanometric aluminum with copper oxide (Al + CuO), iron oxide (Al + Fe2O3), calcium iodate (Al + Ca(IO3)2), and iodine pentoxide (I2O5). In all cases energy propagation was examined in terms of flame speed and higher in the high oxygen environments. However, the convectively dominant reactions showed a smaller percent increase in flame speed mainly attributed to the reaction mechanism.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,