Article ID Journal Published Year Pages File Type
1687245 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009 4 Pages PDF
Abstract

Using PIGE (Proton Induced Gamma Emission) technique at TARRI (Takasaki Advanced Radiation Research Institute), Japan, we measured fluorine (F) uptake into the tooth enamel around two fluoride-containing materials during caries progression using pH cycling. Class V cavities in extracted human teeth were drilled and filled with fluoride-containing materials (i.e. “Fuji IX” (FN) and “UniFil flow with MEGA bond” (UF)) and a non-fluoride-containing material (i.e. “SOLARE with MEGA bond” (SO)). Three 120 μm longitudinal sections including the filling material were obtained from each tooth. In order to simulate daily acid attack occurring in the oral cavity, the pH cycling (pH 6.8–4.5) was carried out for 1, 3 and 5 weeks, separately. After pH cycling, the caries progression in all specimens was observed using transverse microradiography (TMR). The F and calcium distributions of the specimens were evaluated using PIGE and PIXE techniques. The F distribution of the specimens clearly showed the F uptake from FN into enamel adjacent to the filling material, while the F uptakes from UF and SO were not detected. For UF, the MEGA bond (non-fluoride-containing) between the tooth and UniFil flow interfered with the F absorption into the tooth. For FN, the amount of F uptake into the subsurface enamel increased during pH cycling. The amount of F uptake in 5-week pH cycling had significantly higher value compared to those in 1- and 3-week pH cycling. For UF and SO, there were no significant differences between the different durations of pH cycling.Among fluoride-containing materials, there were some differences in the F uptake with increased pH cycling, which could possibly lead to obtaining difference in clinical performance. The data obtained using PIGE and PIXE techniques were useful in understanding the benefit of fluorine by means of fluoride-containing material for preventing caries.

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , , , , , ,