Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1687584 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2008 | 4 Pages |
Abstract
It has been shown that microscale 14C measurements are possible by using a gas handling system and a gas ion source [T. Uhl, W. Kretschmer, W. Luppold, A. Scharf, AMS measurements from microgram to milligram, Nucl. Instr. and Meth. (2005) 474 (240th ed.), T. Uhl, W. Luppold, A. Rottenbach, A. Scharf, K. Kritzler, W. Kretschmer, Development of an automatic gas handling system for microscale AMS (14C) measurements, Nucl. Instr. and Meth. (2007) 303 (259th ed.)]. In Erlangen a gas handling system was especially developed for environmental and biomedical investigations. For the separation of the compound of interest a standard gas chromatograph (GC) is used. To minimize the sample contamination and sample loss we have designed a fraction collector that connects a GC and an elemental analyzer (EA) directly. The selected compound is combusted in the EA and the resulting CO2 is then transferred into the gas handling system for AMS measurements. From the beginning of GC preparation up to the AMS measurement the sample is in a closed line. All operations are fully automated, so no manual operations are necessary. This guarantees high cleanness and maximum sample yield. Preliminary measurements are done using modern and old ethyl alcohol (from fermentation and of petrochemical origin, respectively). The results are consistent with their expected values although cross contamination and background signal increased as the sample mass was decreased.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Surfaces, Coatings and Films
Authors
Andreas Rottenbach, T. Uhl, A. Hain, A. Scharf, K. Kritzler, W. Kretschmer,