Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1688042 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2006 | 9 Pages |
In elastic backscattering spectrometry, the shape of the observed spectrum due to resonances in the nuclear scattering cross-section is influenced by many factors. If the energy spread of the beam before interaction is larger than the resonance width, then a simple convolution with the energy spread on exit and with the detection system resolution will lead to a calculated spectrum with a resonance much sharper than the observed signal. Also, the yield from a thin layer will not be calculated accurately. We have developed an algorithm for the accurate simulation of backscattering spectra in the presence of sharp resonances. Albeit approximate, the algorithm leads to dramatic improvements in the quality and accuracy of the simulations. It is simple to implement and leads to only small increases of the calculation time, being thus suitable for routine data analysis. We show different experimental examples, including samples with roughness and porosity.