Article ID Journal Published Year Pages File Type
168806 Combustion and Flame 2014 18 Pages PDF
Abstract

The paper describes the results of a comprehensive study of turbulent mixing, fuel spray dispersion and evaporation and combustion in a gas-turbine combustor geometry (the DLR Generic Single Sector Combustor) with the aid of Large Eddy Simulation (LES). An Eulerian description of the continuous phase is adopted and is coupled with a Lagrangian formulation of the dispersed phase. The sub-grid scale (sgs) probability density function approach in conjunction with the stochastic fields solution method is used to account for sgs turbulence-chemistry interactions. Stochastic models are used to represent the influence of sgs fluctuations on droplet dispersion and evaporation. Two different test cases are simulated involving reacting and non-reacting conditions. The simulations of the underlying flow field are satisfying in terms of mean statistics and the structure of the flame is captured accurately. Detailed spray simulations are also presented and compared with measurements where the fuel spray model is shown to reproduce the measured Sauter Mean Diameter (SMD) and the velocity of the droplets accurately.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,