Article ID Journal Published Year Pages File Type
1689022 Vacuum 2010 6 Pages PDF
Abstract

The smooth ultra-nanocrystalline diamond (UNCD) films were prepared by microwave plasma chemical vapor deposition (MWCVD) using argon-rich CH4/H2/Ar plasmas with varying argon concentration from 96% to 98% and negative bias voltage from 0 to −150 V. The influences of argon concentration and negative bias voltage on the microstructure, morphology and phase composition of the deposited UNCD films are investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), atom force microscopy (AFM), and visible and UV Raman spectroscopy. It was found that the introduction of argon in the plasma caused the grain size and surface roughness decrease. The RMS surface roughness of 9.6 nm (10 micron square area) and grain size of about 5.7 nm of smooth UNCD films were achieved on Si(100) substrate. Detailed experimental results and mechanisms for UNCD film deposition in argon-based plasma are discussed. The deposited highly smooth UNCD film is also expected to be applicable in medical implants, surface acoustic wave (SAW) devices and micro-electromechanical systems (MEMS).

Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , ,